
BIROn - Birkbeck Institutional Research Online

Levene, Mark and Vincent, Millist W. (2000) Justification for inclusion
dependency normal form. IEEE Transactions on Knowledge and Data
Engineering 12 (2), pp. 281-291. ISSN 1041-4347.

Downloaded from: http://eprints.bbk.ac.uk/196/

Usage Guidelines:
Please refer to usage guidelines at http://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

http://eprints.bbk.ac.uk/196/
http://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Birkbeck ePrints: an open access repository of the
research output of Birkbeck College

http://eprints.bbk.ac.uk

Levene, Mark and Vincent, Millist W. (2000) Justification
for inclusion dependency normal form. IEEE Transactions
on Knowledge and Data Engineering 12 (2) 281-291.

This is an exact copy of a paper published in IEEE Transactions on
Knowledge and Data Engineering (ISSN 1041-4347). It is reproduced with
permission from the publisher. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works must be obtained from the IEEE. © 2000 IEEE.

Copyright and all rights therein are retained by authors or by other copyright
holders. All persons downloading this information are expected to adhere to
the terms and constraints invoked by copyright. This document or any part
thereof may not be reposted without the explicit permission of the copyright
holder.

Citation for this copy:
Levene, Mark and Vincent, Millist W. (2000) Justification for inclusion
dependency normal form. London: Birkbeck ePrints. Available at:
http://eprints.bbk.ac.uk/archive/00000196

Citation as published:
Levene, Mark and Vincent, Millist W. (2000) Justification for inclusion
dependency normal form. IEEE Transactions on Knowledge and Data
Engineering 12 (2) 281-291.

http://eprints.bbk.ac.uk

Contact Birkbeck ePrints at lib-eprints@bbk.ac.uk

http://eprints.bbk.ac.uk/
http://eprints.bbk.ac.uk/archive/00000196
http://eprints.bbk.ac.uk/
mailto:lib-eprints@bbk.ac.uk

Justification for Inclusion Dependency
Normal Form

Mark Levene and Millist W. Vincent

AbstractÐFunctional dependencies (FDs) and inclusion dependencies (INDs) are the most fundamental integrity constraints that

arise in practice in relational databases. In this paper, we address the issue of normalization in the presence of FDs and INDs and, in

particular, the semantic justification for Inclusion Dependency Normal Form (IDNF), a normal form which combines Boyce-Codd

normal form with the restriction on the INDs that they be noncircular and key-based. We motivate and formalize three goals of

database design in the presence of FDs and INDs: noninteraction between FDs and INDs, elimination of redundancy and update

anomalies, and preservation of entity integrity. We show that, as for FDs, in the presence of INDs being free of redundancy is

equivalent to being free of update anomalies. Then, for each of these properties, we derive equivalent syntactic conditions on the

database design. Individually, each of these syntactic conditions is weaker than IDNF and the restriction that an FD not be embedded

in the righthand side of an IND is common to three of the conditions. However, we also show that, for these three goals of database

design to be satisfied simultaneously, IDNF is both a necessary and sufficient condition.

Index TermsÐRelational database design, normal forms, functional dependency, inclusion dependency.

æ

1 INTRODUCTION

FUNCTIONAL dependencies (FDs) [2], [25], [31], [1] general-
ize the notions of entity integrity and keys [13] and

inclusion dependencies (INDs) [27], [8] generalize the
notions of referential integrity and foreign keys [13], [17]. In
this sense, FDs and INDs are the most fundamental data
dependencies that arise in practice.

Relational database design in the presence of FDs is an
established area in database theory which has been
researched for more than 20 years [12], [3], [25], [31], [1].
The semantic justification of the normal forms in the
presence of FDs is well-understood in terms of eliminating
the so-called update anomalies and redundancy problems
that can arise in a relation satisfying a set of FDs [6], [20],
[9], [33], [34]. The advice that is given as a result of this
investigation of the semantics of the normal forms is that, in
order to eliminate the above-mentioned problems, we
should design database schemas which are in Boyce-Codd
Normal Form (BCNF) [12].

Despite the importance of INDs as integrity constraints,
little research has been carried out on how they should be
integrated into the normalization process of a relational
database. Such an integration is fundamental to the success
of a design since the enforcement of referential integrity is
no simple matter [14]. Normal forms which include FDs
and INDs have been considered in [7], [28], [23], [29], [4],
but necessary and sufficient conditions in terms of remov-

ing the update anomalies and redundancy problems were
not given. It is our goal in this paper to fill in this gap by
providing sufficient and necessary semantics for Inclusion
Dependency Normal Form (IDNF).

We consider some of the problems that occur in the
presence of FDs and INDs through two examples. The first
example illustrates the situation when an attribute is
redundant due to interaction between FDs and INDs.

Example 1.1. Let HEAD be a relation schema, with
attributes H and D, where H stands for head of
department and D stands for department, and let LECT
be a relation schema, with attributes L and D, where L
stands for lecturer and, as before, D stands for depart-
ment. Furthermore, let F = {HEAD : H! D, LECT : L!
D} be a set of FDs over a database schema R = {HEAD,
LECT}, stating that a head of department manages a
unique department and a lecturer works in a unique
department, and I = {HEAD[HD] � LECT[LD]} be a set
of INDs over R stating that a head of department also
works as a lecturer in the same department. We note that
I [(F ÿ {HEAD : H! D}) � HEAD : H! D, where �
denotes logical implication, by the pullback inference rule
(see Proposition 2.1) and, thus, the FD HEAD : H! D in
F is redundant. Also, note that we have not assumed that
HEAD : D ! H in F and, thus, a department may have
more than one head.

Two problems arise with respect to R and F [I. First,
the interaction between F and I may lead to the logical
implication of data dependencies that were not envi-
saged by the database designer and may not be easy to
detect; in general, the implication problem for FDs and
INDs is intractable (see the discussion in Section 2). In
this example, the pullback inference rule implies that an
FD in F is redundant.

Second, the IND HEAD[HD] � LECT[LD] combined
with the FD LECT : L! D imply that the attribute D in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000 281

. M. Levene is with the Department of Computer Science, University College
London, Gower Street, London WC1E 6BT, UK.
E-mail: mlevene@cs.ucl.ac.uk.

. M.W. Vincent is with the Advanced Computing Research Centre, School of
Computer and Information Science, University of South Australia,
Adelaide, Australia 5095.
E-mail: millist.vincent@unisa.edu.au.

Manuscript received 5 May 1997; accepted 7 Jan. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104996.

1041-4347/00/$10.00 ß 2000 IEEE

HEAD is redundant since the department of a head can
be inferred from the fact that L is a key for LECT.
(Formally, this inference can be done with the aid of a
relational algebra expression which uses renaming, join
and projection; see [25], [31], [1] for details on the
relational algebra.) Thus, HEAD[HD] � LECT[LD] can
be replaced by HEAD[H] � LECT[L] and the attribute
D in HEAD can be removed without any loss of
information.

The second example illustrates the situation when the
propagation of insertions due to INDs may result in the
violation of entity integrity.

Example 1.2. Let EMP be a relation schema, with attributes
E and P, where E stands for employee name and P stands
for project title, and let PROJ be a relation schema, with
attributes P and L, where, as before, P stands for project
title and L stands for project location. Furthermore, let F =
{EMP : E! P} be a set of FDs over a database schema R=
{EMP, PROJ}, stating that an employee works on a
unique project, and I = {EMP[P] � PROJ[P]} be a set of
INDs over R stating that an employee's project is one of
the listed projects. We note that a project may be situated
in several locations and, correspondingly, a location may
be associated with several projects and, thus, {P, L} is the
primary key of PROJ.

The problem that arises with respect to R and F [I is
that the righthand side, P, of the IND EMP[P] � PROJ[P]
is a proper subset of the primary key of PROJ. Let r1 and
r2 be relations over EMP and PROJ, respectively.
Suppose that an employee is assigned to a new project
which has not yet been allocated a location and is thus
not yet recorded in r2. Now, due to the IND in I, the
insertion of the employee tuple into r1, having this new
project, should be propagated to r2 by inserting into r2 a
tuple recording the new project. But, since the location of
the project is still unknown, then, due to entity integrity,
it is not possible to propagate this insertion to r2.

We summarize the problems that we would like to avoid
when designing relational databases in the presence of FDs
and INDs. First, we should avoid redundant attributes,
second, we should avoid the violation of entity integrity
when propagating insertions, and, last, we should avoid
any interaction between FDs and INDs due to the
intractability of the joint implication problem for FDs and
INDs. The main contributions of this paper are the
formalization of these design problems and the result that
if the database schema is in IDNF, then all of these problems
are eliminated. We also demonstrate the robustness of IDNF
by showing that, as for BCNF, removing redundancy from
the database schema in the presence of FDs and INDs is also
equivalent to eliminating update anomalies from the
database schema.

The layout of the rest of the paper is as follows: In
Section 2, we formally define FDs, INDs and their
satisfaction and introduce the chase procedure as a means
of testing and enforcing the satisfaction of a set of FDs and
INDs. In Section 3, we formalize the notion of no interaction
between a set of FDs and INDs. In Section 4, we characterize

redundancy in the presence of FDs and INDs. In Section 5,
we characterize insertion and modification anomalies in the
presence of FDs and INDs and show an equivalence
between being free of either insertion or modification
anomalies and being free of redundancy. In Section 6, we
characterize a generalization of entity integrity in the
presence of FDs and INDs. In Section 7, we define IDNF
and present our main result that establishes the semantics
of IDNF in terms of either the update anomalies or
redundancy problems and the satisfaction of generalized
entity integrity. Finally, in Section 8, we give our concluding
remarks and indicate our current research direction.

Definition 1.1 (Notation). We denote the cardinality of a set S
by j Sj . The size of a set S is defined to be the cardinality of a
standard encoding of S.

If S is a subset of T, we write S � T and if S is a proper
subset of T, we write S � T. We often denote the singleton {A}
simply by A. In addition, we often denote the union of two sets
S, T, i.e., S [T, simply by ST.

2 FUNCTIONAL AND INCLUSION DEPENDENCIES

We formalize the notions of FDs and INDs and their
satisfaction and define some useful subclasses of FDs and
INDs. We also present the chase procedure for testing and
enforcing the satisfaction of a set of FDs and INDs. The
chase procedure is instrumental in proving our main
results.

Definition 2.1 (Database schema and database). Let U be a
finite set of attributes. A relation schema R is a finite
sequence of distinct attributes from U . A database schema is
a finite set R � fR1; R2; . . . ; Rng such that each Ri 2 R is a
relation schema and

S
i Ri � U .

We assume a countably infinite domain of values, D;
without loss of generality, we assume that D is linearly
ordered. An R-tuple (or, simply, a tuple whenever R is
understood from context) is a member of the Cartesian product
D� . . .�D (j Rj times).

A relation r over R is a finite (possibly empty) set of R-
tuples. A database d over R is a family of n relations
fr1; r2; . . . ; rng such that each ri 2 d is over Ri 2 R. Given a
tuple t over R and assuming that r 2 d is the relation in d over
R, we denote the insertion of t into r by d [ftg and the
deletion of t from r by dÿ ftg.
From now on, we let R be a database schema and d be a

database over R. Furthermore, we let r 2 d be a relation
over the relation schema R 2 R.

Definition 2.2 (Projection). The projection of an R-tuple t
onto a set of attributes Y � R, denoted by t[Y] (also called the
Y-value of t), is the restriction of t to Y. The projection of a
relation r onto Y, denoted as �Y�r�, is defined by
�Y�r� � ft�Y� j t 2 rg.

Definition 2.3 (Functional Dependency). A functional
dependency (or, simply, an FD) over a database schema R
is a statement of the form R: X! Y (alternatively, X! Y is
an FD over the relation schema R), where R 2 R and X, Y �
R are sets of attributes. An FD of the form R: X! Y is said to
be trivial if Y � X; it is said to be standard if X 6� ;.

An FD R: X! Y is satisfied in d, denoted by d � R: X!
Y, whenever 8t1; t2 2 r, if t1[X] = t2[X], then t1[Y] = t2[Y].

Definition 2.4 (Inclusion Dependency). An inclusion
dependency (or, simply, an IND) over a database schema R

282 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

is a statement of the form Ri[X] � Rj[Y], where Ri;Rj 2 R

and X � Ri, Y � Rj are sequences of distinct attributes such

that j X j�j Y j . An IND is said to be trivial if it is of the

form R[X] � R[X]. An IND R[X] � S[Y] is said to be unary

if j X j� 1. An IND is said to be typed if it is of the form R[X]

� S[X].
An IND Ri[X] � Rj[Y] over R is satisfied in d, denoted by

d � Ri[X] � Rj[Y], whenever �X�ri� � �Y�rj�, where
ri; rj 2 d are the relations over Ri and Rj, respectively.

From now on, we let F be a set of FDs over R and

Fi � fRi : X! Y 2 Fg, f1; 2; . . . ; ng, be the set of FDs in F

over Ri 2 R. Furthermore, we let I be a set of INDs over R

and let � � F [I.

Definition 2.5 (Logical implication). � is satisfied in d,

denoted by d � �, if 8� 2 �; d � �.
� logically implies an FD or an IND �, written � � �, if,

whenever d is a database over R, then the following condition
is true:

if d � � holds then d � � also holds:

� logically implies a set ÿ of FDs and INDs over R,
written � � ÿ, if 8� 2 ÿ;� � �. We let �� denote the set of
all FDs and INDs that are logically implied by �.

Definition 2.6 (Keys, BCNF and key-based INDs). A set of

attributes X � Ri is a superkey for Ri with respect to Fi if

Fi � Ri: X! Ri holds; X is a key for Ri with respect to Fi if

it is a superkey for Ri with respect to Fi and for no proper

subset Y � X is Y a superkey for Ri with respect to Fi. We let

KEYS(F) be the set of all FDs of the form X! Ri, where X is a

key for Ri with respect to Fi, for i 2 f1; 2; . . . ; ng.
A database schema R is in Boyce-Codd Normal Form

(or, simply, BCNF) with respect to F if for all Ri 2 R, for all
nontrivial FDs Ri : X! Y 2 Fi, X is a superkey for Ri with
respect to Fi.

An IND Ri[X] � Rj[Y] is superkey-based, respectively,
key-based, if Y is a superkey, respectively, a key, for Rj with
respect to Fj.

Definition 2.7. (Circular and noncircular sets of INDs). A

set I of INDs over R is circular if either

1. I contains a nontrivial IND R[X] � R[Y], or
2. there ex is t m dis t inct r e la t ion schemas ,

R1; R2; R3; . . . ; Rm 2 R, with m > 1, such that I
contains the INDs:

R1�X1� � R2�Y2�; R2�X2�
� R3�Y3�; . . . ; Rm�Xm� � R1�Y1�:

A set of INDs I is noncircular if it is not circular.

The class of proper circular INDs [21] defined below

includes the class of noncircular INDs as a special case.

Definition 2.8 (Proper circular sets of INDs). A set I of INDs

over R is proper circular if it is either noncircular or

whenever there exist m distinct relation schemas,

R1; R2; R3; . . . ; Rm 2 R, with m > 1, such that I contains

the INDs:

R1�X1� � R2�Y2�; R2�X2� � R3�Y3�; . . . ; Rmÿ1�Xmÿ1�
� Rm�Ym�; Rm�Xm� � R1�Y1�;

then, for all i 2 f1; 2; . . . ;mg, we have Xi � Yi.

It is well-known that Armstrong's axiom system [2], [25],
[31], [1] can be used to computeF� and that Casanovas et al.'s
axiom system [8] can be used to compute I�. However,
when we consider FDs and INDs together computing ��

was shown to be undecidable [27], [16]. On the other hand,
when I is noncircular, then Mitchell's axiom system [27] can
be used to compute �� [10]. Moreover, in the special case,
when I is a set of unary INDs, then Cosmadakis's et al.
axiom system [11] can be used to compute ��.

The implication problem is the problem of deciding
whether � 2 ��, where � is an FD or IND and � is a set of
FDs and INDs. It is well-known that the implication
problem for FDs on their own is decidable in linear time
[3]. On the other hand, the implication problem for INDs is,
in general, PSPACE-complete [8]. The implication problem
for noncircular INDs is NP-complete [26], [10]. Typed INDs
have a polynomial time implication problem [15]. Unary
INDs have a linear time implication problem [11]. When we
consider FDs and INDs together, the implication problem is
undecidable, as mentioned above. The implication problem
for FDs and noncircular INDs is EXPTIME-complete and if
the noncircular INDs are typed, then the implication
problem is NP-hard [10]. FDs and unary INDs have a
polynomial time implication problem [11].

The next proposition describes the pullback inference rule
[27], [8], which allows us to infer an FD from an FD and an
IND.

Proposition 2.1. If � � {R[XY] � S[WZ], S : W ! Z} and
j Xj�jWj , then � � R : X ! Y.

Definition 2.9.(Reduced set of FDs and INDs). The
projection of a set of FDs Fi over Ri onto a set of attributes
Y � Ri, denoted by Fi[Y], is given by Fi[Y] = fRi : W ! Z
j Ri: W ! Z 2 F�i and WZ � Y}.

A set of attributes Y � Ri is said to be reduced with
respect to Ri and a set of FDs Fi over Ri (or, simply, reduced
with respect to Fi if Ri is understood from context) if Fi[Y]
contains only trivial FDs. A set of FDs and INDs � = F [I is
said to be reduced if 8 Ri[X] � Rj[Y] 2 I, Y is reduced with
respect to Fj.

It can easily be shown that it can be decided in
polynomial time in the size of � whether � is reduced or
not.

The chase procedure provides us with an algorithm
which forces a database to satisfy a set of FDs and INDs.

Definition 2.10 (The chase procedure for INDs). The chase
of d with respect to �, denoted by CHASE(d;�), is the result
of applying the following chase rules, that is, the FD and the
IND rules, to the current state of d as long as possible. (The
current state of d prior to the first application of the chase rule
is its state upon input to the chase procedure.)

FD rule: If Rj : X ! Y 2 Fj and 9t1; t2 2 rj such that
t1[X] = t2[X], but t1[Y] 6� t2[Y], then, 8 A 2 Y, change all
the occurrences in d of the larger of the values of t1[A] and
t2[A] to the smaller of the values of t1[A] and t2[A].

IND rule: If Ri[X] � Rj[Y] 2 I and 9t 2 ri such that t[X]
62 �Y�rj�, then add a tuple u over Rj to rj, where u[Y] = t[X]
and 8 A 2 Rj ÿ Y, u[A] is assigned a new value greater than
any other current value occurring in the tuples of relations in
the current state of d.

LEVENE AND VINCENT: JUSTIFICATION FOR INCLUSION DEPENDENCY NORMAL FORM 283

We observe that if we allow I to be circular, then the
chase procedure does not always terminate [22]. (When the
chase of d with respect to � does not terminate, then
CHASE(d;�) is said to violate a set of FDs G over R, i.e.,
CHASE(d;�) 6� G, if after some finite number of applica-
tions of the IND rule to the current state of d, resulting in d0,
we have that d0 6� G.) In the special case when I is in the
class of proper circular INDs, then it was shown that the
chase procedure always terminates [21].

The following theorem is a consequence of results in
[29, Chapter 10].

Theorem 2.2. Let � � F [I be a set of FDs and proper circular
INDs over a database schema R. Then, the following two
statements are true:

1. CHASE(d;�) � �.
2. CHASE(d;�) terminates after a finite number of

applications of the IND rule to the current state of d.

3 INTERACTION BETWEEN FDS AND INDS

As demonstrated by Proposition 2.1, FDs and INDs may
interact in the sense that there may be FDs and INDs
implied by a set of FDs and INDs which are not implied by
the FDs or INDs taken separately. From the point of view of
database design, interaction is undesirable since a database
design may be normalized with respect to the set of FDs,
but not with respect to the combined set of FDs and INDs.
This is illustrated in the following example.

Example 3.1. Consider the database schema R = {R, S},
where R = S = ABC and a set � of FDs F and INDs I over
R given by F = {S : A! BC} and I = {R[AB] � S[AB]}. It
can easily be verified that R is in BCNF with respect to F.
However, if we augment F with the FD R : A! B, which
is logically implied by � on using Proposition 2.1, then R
is not in BCNF with respect to the augmented set of FDs F
since A is not a superkey for R with respect to the set of
FDs {R : A ! B}

The other major difficulty that occurs in database design
when the set of FDs and INDs interact is a result of the fact
that, as noted earlier, the implication problem for an
arbitrary set of FDs and INDs is undecidable [27], [16].
Because of this, in general, it cannot be determined whether
a database design is in BCNF with respect to an arbitrary set
of FDs and INDs since the set of all logically implied FDs
cannot be effectively computed. As a consequence, a
desirable goal of database design is that the set of FDs
and INDs do not interact. We now formalize the notion of
noninteraction and characterize, for proper circular INDs, a
special case when this noninteraction occurs.

Definition 3.1 (No interaction occurring between FDs and
INDs). A set of FDs F over R is said not to interact with of
set of INDs I over R if

1. for all FDs � over R, for all subsets G � F, G [I � �
if and only if G � �, and

2. for all INDs � over R, for all subsets J � I, F [J � �
if and only if J � �.

The following theorem is proven in [24] (see [29, Chapter
10]).

Theorem 3.1. If R is in BCNF with respect to a set of FDs F over
R, I is a proper circular set of of INDs over R and � � F [I is
reduced, then F and I do not interact.

As the next example shows, we cannot, in general,
extend Theorem 3.1 to the case when the set of INDs I is not
proper circular. In particular, by Proposition 2.1, � being
reduced is a necessary condition for no interaction to occur
between F and I, but it is not a sufficient condition for
noninteraction.

Example 3.2. Consider a database schema R = {R, S}, where
R = S = AB, and a set � of FDs F and INDs I over R given
by F = {R : A! B, S : B! A} and I = {R[A] � S[A], S[B]
� R[B]}. It can easily be verified that � is reduced and
that I is circular. On using the axiom system of [11], it
follows that � � {R : B! A, S : A! B} and, thus, F and
I interact.

As another example let F = {R : A! B} and I = {R[A]
� R[B]} It can easily be verified that � is reduced and I is
circular. Again, F and I interact since, on using the axiom
system of [11], � � {R : B ! A, R[B] � R[A]}.

4 ATTRIBUTE REDUNDANCY

In this section, we investigate the conditions on database
design which ensure the elimination of redundancy, a goal
which has been long cited as one of the principal
motivations for the use of normalization in database design
[25], [31], [29], [1]. However, it has proven to be somewhat
difficult to formalize the intuitive notion of redundancy and
it was only relatively recently that this notion was
formalized and its relationship to the classical normal
forms was established [33], [34]. This definition of redun-
dancy, and the associated normal form that guarantees
redundancy elimination, is as follows.

Definition 4.1 (Value redundancy). Let d be a database over R

that satisfies F and let t 2 r be a tuple, where r 2 d is a relation
over a relation schema R 2 R. The occurrence of a value t[A],
where A 2 R is an attribute, is redundant in d with respect
to F if, for every replacement of t[A] by a distinct value v 2 D
such that v 6� t[A], resulting in the database d0, we have that
d0 6� F.

A database schema R is said to be in Value Redundancy
Free Normal Form (or, simply, VRFNF) with respect to a set
of FDs F over R if there does not exist a database d over R and
an occurrence of a value t[A] that is redundant in d with
respect to F.

We now illustrate the definition by a simple example.

Example 4.1. Consider the single relation scheme R = {R},
where R = ABC, and a set F of FDs given by F = {R : A!
B}. Then, R is not in VRFNF since, if we consider the
relation r over R, shown in Table 1, then the B-value, 2,
present in both tuples, is redundant since r � F and
replacing the value 2 in either tuple by another value
results in F being violated.
The following result, which was established in [33], [34],

shows that, given a set of FDs F, VRFNF is equivalent to

284 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

BCNF. For the sake of completeness, we provide a sketch of
the proof.

Theorem 4.1. A database schema R is in BCNF with respect to F
if and only if R is in VRFNF with respect to F.

Proof. The if part follows by showing the contrapositive
that if R is not in BCNF, then it is not in VRFNF. This
result follows because if R is not in BCNF, then there
exists a nontrivial implied FD X ! A, where X is not a
superkey and, using a well-known construction (Theo-
rem 7.1 in [31]), there exists a two tuple relation r in
which the tuples are identical on XA. The relation r is not
in VRFNF since changing either of the A-values results in
X ! A being violated. The only if part follows from the
observation that if an occurrence t[A] is redundant in a
relation r, then there must exist X! Y 2 F, with A 2 Y,
and another tuple t1 2 r such that t[X] = t1[X]. This
implies that X cannot be a superkey and, hence, that R is
not in BCNF and, so, establishes the only if part. tu

In [34], it was shown that, in the presence of multivalued
dependencies, 4NF (fourth normal form [18]) is also
equivalent to VRFNF. Somewhat surprisingly, the syntactic
equivalent for VRFNF in the most general case, where join
dependencies are present, is a new normal form that is
weaker than PJ/NF (project-join normal form [19]) and 5NF
(fifth normal form [25]) [34].

The concept of value redundancy is of little use though
in evaluating database designs in the presence of INDs
because of the following result. It demonstrates that no
design where the constraints involve nontrivial INDs can be
in VRFNF with respect to the set of INDs.

Lemma 4.2. Let � = F [I be a set of FDs and noncircular INDs
over a database schema R. Then, R is not in VRFNF with
respect to � if I contains at least one nontrivial IND.

Proof. Let Ri[X] � Rj[Y] be a nontrivial IND in I. We
construct a database d such that the relation ri in d over
Ri has in it a single tuple ti containing zeros and every
other relation rk in d is empty. Now, let d0 = CHASE(d;�)
and, thus, by Theorem 2.2, d0 � �. Due to the non-
circularity of I, we have in d0 that ri � r0i, where r0i is the
current state of ri in d0. Let r0j be the current state of the
relation rj over Rj in d0. Then, the Y-values of the tuple in
r0j must contain zeros since d0 � �. Thus, all of the zeros
in the single tuple in r0i are redundant since changing any
of them results in Ri[X] � Rj[Y] being violated. tu

Due to the above lemma, we require only that the design
be in VRFNF with respect to the FDs, but not with respect to
the INDs. However, as noted by others [30], [23], [29], an
even stronger form of redundancy can occur in a database
in the presence of INDs. We refer to this as attribute

redundancy, which was illustrated in Example 1.1 given in
the introduction.

Definition 4.2 (Attribute redundancy). An attribute A in a
relation schema R 2 R is redundant with respect to � if,
whenever d is a database over R which satisfies � and r 2 d is
a nonempty relation over R, then, for every tuple t 2 r, if t[A]
is replaced by a distinct value v 2 D such that v 6� t[A],
resulting in the database d0, then d0 6� �.

A database schema R is said to be in Attribute
Redundancy Free Normal Form (or, simply, ARFNF) with
respect to a set of FDs and INDs � over R if there does not
exists an attribute A in a relation schema R 2 R which is
redundant with respect to �.

The next example shows that ARFNF is too weak when
� contains only FDs, highlighting the difference between
VRFNF and ARFNF.

Example 4.2. Consider the relation r of Example 4.1, shown
in Table 1, and let r0 be the result of adding the tuple
t �< 5; 2; 4 > to r. Then, it can easily be verified that,
although R is not in VRFNF with respect to F, R is in
ARFNF with respect to F since if we replace any value in
t by a distinct value, then the resulting database still
satisfies F.

Combining Definitions 4.1 and 4.2, we can define
redundancy free normal form.

Definition 4.3 (Redundancy free normal form). A database
schema R is said to be in Redundancy Free Normal Form
(or, simply, RFNF) with respect to a set of FDs and INDs �

over R if it is in VRFNF with respect to F and in ARFNF with
respect to �.

The next theorem shows that, when the set of INDs is
noncircular, then RFNF is equivalent to the set of FDs and
INDs being reduced and to the database schema being in
BCNF.

Theorem 4.3. Let � � F [I be a set of FDs and noncircular
INDs over a database schema R. Then, R is in RFNF with
respect to � if and only if � is reduced and R is in BCNF with
respect to F.

Proof If. By Theorem 4.1, R is in VRFNF with respect to F.
So, it remains to show that R is in ARFNF.

In the proof, we utilize a directed graph representa-
tion, GI = (N, E), of the set of INDs I, which is
constructed as follows (see [30]): Each relation schema
R in R has a separate node in N labeled R; we do not
distinguish between nodes and their labels. There is an
arc (R, S) 2 E if and only if there is a nontrivial IND R[X]
� S[Y] 2 I. It can easily be verified that there is a path in
GI from R to S if and only if, for some IND R[X] � S[Y],
we have I � R[X] � S[Y]. Moreover, since I is
noncircular, we have that GI is acyclic.

Let A 2 Ri be an attribute, where Ri 2 R is a relation
schema. We construct a database d having a nonempty
relation ri 2 d, which exhibits the fact that A is
nonredundant with respect to �.

We first initialize the database d to be a database d0 as
follows: Let ri � r0

i have a single tuple t such that, for all
B 2 Ri ÿ , A t[B] = 0 and t[A] = 1. All other relations r0

k

LEVENE AND VINCENT: JUSTIFICATION FOR INCLUSION DEPENDENCY NORMAL FORM 285

TABLE 1
The Relation r

over relation schemas Rk are initialized to be empty in d0.
Therefore, by Theorem 2.2, we have that d1 �
CHASE(d0;�) � �. Let r1

i in d1 be the current state of
ri. Then, by Theorem 3.1, we have r1

i � ri since d0 � F
and the current state r1

k in d1 of a relation r0
k is empty if

there does not exist a path in GI from Ri to Rk.
Let d2 � �d1 ÿ fr1

i g� [fr2
i g, where r2

i has a single tuple
t0 such that, for all B 2 Ri, including A, t[B] = 0.
Therefore, by Theorem 2.2, we have that d3 �
CHASE(d2;�) � �. Moreover, as above, r3

i � r2
i , where

r3
i in d3 is the current state of ri since d2 � F. Now, let
d � �d3 ÿ fr3

i g� [frig be the final state of the initializa-
tion of d. Then, d � F since d3 � F. We claim that it is
also the case that d � I.

Let us call a nontrivial IND Ri[X] � Rj[Y] 2 I a source
IND if A 2 X. By the projection and permutation
inference rule for INDs [8], we assume ,without loss of
generality, that a source IND has the form Ri[VA] �
Rj[WB].

Due to the noncircularity of I, any current state rk in d
of a relation r3

k is empty if there does not exist a path in
GI from Ri to Rk; therefore, for such rk, we have
rk � r3

k � r2
k � r1

k � r0
k � ;. Now, if there is an arc from Ri

to Rj in GI , then there is some IND Ri[X] � Rj[Y] in I.
There are two cases to consider.

First, if A 62 X, then t[X] = t0[X] contains only zeros
and, thus, d � Ri[X] � Rj[Y]. Second, if A 2 X, then
Ri[X] � Rj[Y] is a source IND Ri[VA] � Rj[WB]. Let rj
in d be the current state of r3

j , i.e., rj � r3
j . Then, t[VA]

2 �VA�rj� s i n c e r0
j � r1

j � r2
j � r3

j � rj a n d t[V A]
2 �VA�r1

j �. Therefore, d � Ri[X] � Rj[Y]. It follows that,
for any IND, Ri[X] � Rj[Y] such that there is a path from
Ri to Rj and such that I � Ri[X] � Rj[Y], we have d �
Ri[X] � Rj[Y] since d3 � Ri[X] � Rj[Y]. Thus, d � I as
required. The if part is now concluded since d3 and d
differ only by the replacement of t0[A] = 0 by t[A] = 1.

Only if. By Theorem 4.1, if R is not in BCNF with
respect to F, then it is not in VRFNF. So, assuming that �
is not reduced, it remains to show that R is not in
ARFNF. By this assumption, there exists an IND Ri[X] �
Rj[Y] 2 I such that W! B 2 Fj[Y] is a nontrivial FD. By
the pullback inference rule, there is a nontrivial FD V!
A 2 Fi[X] since Ri[VA] � Rj[WB] by the projection and
permutation inference rule for INDs [8]. Now, let t 2 ri
be a tuple, where ri 2 d is a nonempty relation over Ri

and assume that d � �. It follows that A is redundant
with respect to � since, whenever we replace t[A] by a
distinct value resulting in a database d0, it can be seen
that d0 6� Ri[VA] � Rj[WB], otherwise d 6� Rj : W! B
contrary to assumption. tu

We next construct two examples which demonstrate that

if the conditions of Theorem 4.3 are violated, then R is not in

ARFNF.

Example 4.3. Let R be the database schema from

Example 1.1 and consider the database d over R, shown

in Tables 2 and 3, respectively. It can be verified that the

set of FDs and INDs for this example is not reduced, but

that R is in BCNF with respect to the set of FDs. The

attribute D of the relation schema HEAD can be seen to

be redundant since changing e1 in Table 2 causes I to be
violated. A similar situation occurs for every other
database defined over R and, so, R is not in ARFNF.

Example 4.4. Let R= {STUDENT, ENROL}, be a database
schema, with STUDENT = {Stud_ID, Name} and ENROL
= {Stud_ID, Course, Address}. Furthermore, let F =
{ENROL: Stud_ID ! Address} be a set of FDs over R
and I = {ENROL[Stud_ID] � STUDENT[Stud_ID]} be a
set of INDs over R. It can be verified that the set of FDs
and INDs for this example is reduced, but that R is not in
BCNF with respect to the set of FDs. Then, R is not in
RFNF because it is not in VRFNF since both occurrences
of a1 in ENROL are redundant in the database d shown
in Tables 4 and 5, respectively.
As the next example shows, we cannot extend

Theorem 4.3 to the case when the set of INDs I is circular.

Example 4.5. Consider a database schema R = {R, S}, where
R = AB and S = A, and a set � of FDs F and INDs I over R
given by F = {R : A ! B, R : B ! A} and I = {R[A] �
S[A], S[A] � R[A]}. It can be verified that � is reduced, R
is in BCNF with respect to F, and that I is proper circular,
unary, typed, and also key-based.

Let d be a database over R such that d � �, let r 2 d be
a nonempty relation over R, and let t 2 r be a tuple.
Assume, without loss of generality, that d0 is the database
resulting from replacing t[A] = 0 by a distinct value 1,
resulting in a tuple t0, with t0[A] = 1. In order to conclude
the example, we show that d0 6� �. Assume to the
contrary that d0 � �. Thus, there must be a tuple u 2 r
which is distinct from t and such that u[A] = 1. If this is
not the case, then d0 6� R[A] � S[A] since �A�r� � �A�s�,
where s 2 d is a relation over S. Moreover, u[B] = t[B] =
t0[B], otherwise d0 6� R : A ! B. It follows that u[B] =
t[B], but u[A] 6� t[A] and, thus, d 6� R : B! A, contrary
to assumption. Therefore, the attribute A 2 R must be
redundant with respect to �. The reader can easily verify
that the attribute A 2 S is also redundant with respect to
� even if F was empty. It appears that, in this example,
the relation schema S can be removed from R without
any loss of semantics.

5 INSERTION AND MODIFICATION ANOMALIES

In this section, we investigate the conditions under which a
database design ensures the elimination of key-based
update anomalies (as distinct from other types of update
anomalies as investigated in [6], [33]). This concept was
originally introduced in [20] to deal with the insertion and
deletion of tuples and was later extended in [32], [33] to
include the modifications of tuples. A key-based update
anomaly is defined to occur when an update to a relation,
which can either be an insertion or a deletion or a
modification, results in the new relation satisfying key

286 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

TABLE 2
The Relation in d over HEAD

uniqueness, but violating some other constraint on the
relation. The reason for this being considered undesirable is
that the enforcement of key uniqueness can be implemented
via relational database software in a much more efficient
manner than the enforcement of more general constraints
such as FDs [25], [31], [1]. So, if the satisfaction of all the
constraints on a relation is a result of key uniqueness then
the integrity of the relation after an update can be easily
enforced, whereas the existence of a key-based update
anomaly implies the converse. Herein, we formalize these
concepts based on this approach with the only difference
being that, because of the presence of INDs, we allow an
update to propagate to other relations by the chase
procedure. We show that being free of insertion anomalies
is equivalent to being free of modification anomalies. In
addition, we show that, when the INDs are noncircular,
then being free of either insertion or modification anomalies
is equivalent to the set of FDs and INDs being reduced and
the database schema being in BCNF with respect to the set
of FDs. We do not consider deletion anomalies since, in the
presence of FDs, removing a tuple from a relation that
satisfies a set of FDs does not cause any violation of an FD
in the set.

Definition 5.1 (Compatible tuple). A tuple t over R is
compatible with d with respect to a set of FDs and INDs � =
F [I over R (or, simply, compatible with d whenever � is
understood from context) if d [ftg � KEYS(F).

Definition 5.2 (Free of insertion anomalies). A database d
over R has an insertion violation with respect to a set of FDs
and INDs � = F [I over R (or, simply, d has an insertion
violation whenever � is understood from context) if

1. d � �, and
2. there exists a tuple t over R which is compatible with d

but CHASE(d [ftg, I) 6� �.
A database schema R is free of insertion anomalies with

respect to � (or, simply, R is free of insertion anomalies if � is
understood from context) if there does not exist a database d
over R which has an insertion violation.

We note that, in Definition 5.2, we have utilized the chase
procedure to enforce the propagation of insertions of tuples
due to the INDs in I. As an example of an insertion
violation, consider the database schema R in Example 1.1
and let d be the database, where r1, the relation over HEAD,

is empty and r2, the relation over LECT, contains the single
tuple < 0; 0 > . Then, d has an insertion violation when the
tuple < 0; 1 > is inserted into r1 since applying the chase
procedure results in < 0; 1 > being added to the relation r2

and, thus, violating the FD L ! D.
The next theorem shows that, assuming that the set of

INDs is noncircular, being in BCNF and the set of FDs and
INDs being reduced is equivalent to being free of insertion
anomalies.

Theorem 5.1. Let � � F [I be a set of FDs and noncircular

INDs over a database schema R. Then, R is free of insertion

anomalies if and only if � is reduced and R is in BCNF with

respect to F.

Proof. If. Let d be a database over R such that d � � and let t
over Ri, where ri 2 R, be a tuple which is compatible
with d. It remains to show that CHASE(d [ftg, I) � �.
We first claim that CHASE(d [ftg, I) = CHAS-
E(d [ftg;�). This holds due to Theorem 3.1, implying
that the FD rule need never be invoked during the
computation of CHASE(d [ftg;�). Moreover, d [ftg �
F due to the fact that R is in BCNF with respect to F and t
is compatible with d. So, by Theorem 2.2, we have
CHASE(d [ftg;�) � � and, thus, CHASE(d [ftg, I) � �

as required.
Only if. There are two cases to consider.
Case 1. If R is not in BCNF with respect to F, then some

Ri 2 R is not in BCNF with respect to Fi. Thus, there is a
nontrivial FD X ! Y 2 Fi such that X is not a superkey
for Ri with respect to Fi. Assume that X is reduced with
respect to Ri and Fi; otherwise, replace X by a reduced
subset W of X such that W! X 2 F�i . It follows that X is
a proper subset of a superkey of Ri with respect to Fi. Let
ri over Ri contain a single tuple containing zeros and let
all other relations in d be empty. We can assume without
loss of generality that d � �; otherwise, we let d be
CHASE(d;�). Due to I being noncircular, the state of ri
remains unchanged in CHASE(d;�). Now, let t be a tuple
whose X-values are zeros and such that all its other
values are ones. Then, t is compatible with d, but
CHASE(d [ftg, I) 6� � since the FD X ! Y will be
violated in the current state of ri. Therefore, R is not free
of insertion anomalies.

Case 2. If � is not reduced, but R is in BCNF with
respect to F, then we have an IND Ri[X] � Rj[Y], where
Y is a proper superset of a key, say W, for Rj with respect
to Fj. We let rj over Rj contain a single tuple, say tj,
containing zeros and let all other relations in d, including
ri over Ri, be empty. We can assume without loss of
generality that d � �; otherwise, we let d be
CHASE(d;�). Due to I being noncircular, the state of ri
remains unchanged in CHASE(d;�). Now, let t over Ri

LEVENE AND VINCENT: JUSTIFICATION FOR INCLUSION DEPENDENCY NORMAL FORM 287

TABLE 3
The Relation in d over LECT

TABLE 4
The Relation in d over STUDENT

TABLE 5
The Relation in d over ENROL

be a tuple which agrees with tj on its W-value but
disagrees with tj on the rest of its values. Then, t is
compatible with d, but CHASE(d [ftg, I) 6� � since the
FD W! Rj will be violated in the resulting current state
of rj. tu

To illustrate this theorem, we note first that the example
given before Theorem 5.1 demonstrates the case where a
database schema has an insertion anomaly when the set of
dependencies is not reduced. Alternatively, the following
example demonstrates the case of a database schema not
being in BCNF and having an insertion anomaly.

Example 5.1. Let R, � = F [I, be as in Example 4.4. We start
with the database d shown in Tables 6 and 7,
respectively. If we then insert the tuple < s1; c2; a2 > ,
which is compatible with ENROL, into the ENROL
relation, applying the chase procedure results in the
database d0 shown in Tables 8 and 9, respectively, where
n2 is a new value. It can be seen that d0 violates � and, so,
R is not free of insertion anomalies.
In the next example, we show that the only if part of

Theorem 5.1 is, in general, false, even when I is a proper
circular set of INDs.

Example 5.2. Consider a database schema R = {R, S}, where
R = S = AB, and a set � of FDs F and INDs I over R given
by, F = {R : A! B, S : A! B} and I = {R[AB] � S[AB],
S[AB] � R[AB]}. It can easily be verified that I is proper
circular, R is in BCNF, but that � is not reduced. In
addition, R is free of insertion anomalies since, for any
database d � r; s such that d � �, where r and s are the
relations in d over R and S, respectively, we have that
r � s due to I. If we drop S[AB] � R[AB] from I, then, as
in the proof of the only if part of Theorem 5.1, R has an
insertion violation.

The next example illustrates that we cannot, in general,
extend Theorem 5.1 to the case when the set of INDs I is
circular, even when � is reduced, due to possible interac-
tion between the FDs and INDs.

Example 5.3. Consider a database schema R = {R}, where R =
AB, and a set � of FDs F and INDs I over R given by, F =
{R : A! B} and I = {R[A] � R[B]}. It can be verified that
� is reduced, but I is circular. As was shown in Example
3.2, although � is reduced � � {R : B! A, R[B] � R[A]}
and, thus, F and I interact.

Let d be a database over R such that the relation r over
R contains the single tuple < 0; 0 > and let t be the tuple
< 1; 0 > . Then, d has an insertion violation since d � �, t
is compatible with d, but CHASE(d [ftg, I) 6� R : B! A.
(In fact, in this case, the chase procedure does not
terminate, but, since t is inserted into r and the chase
procedure does not modify any of the tuples in its input
database, then it does not satisfy �; see the comment
after Definition 2.10.)

We now formally define the second type of key-based
update anomaly, a modification anomaly, following the
approach in [32], [33] with the only difference again being
that the chase procedure is used to propagate the effects of
the change into other relations.

Definition 5.3 (Free of modification anomalies). A database
d over R has a modification violation with respect to a set of
FDs and INDs � � F [I over R (or, simply, d has a
modification violation whenever � is understood from context)
if

1. d � � and
2. there exists a tuple u 2 r, where r 2 d is the relation

over R, and a tuple t over R which is compatible with
dÿ fug but CHASE(�dÿ fug� [ftg, I) 6� �.

A database schema R is free of modification anomalies
with respect to � (or, simply, R is free of modification
anomalies if � is understood from context) if there does not
exist a database d over R which has a modification violation.

Theorem 5.2. Let � � F [I be a set of FDs and noncircular
INDs over a database schema R. Then, R is free of modification
anomalies if and only if R is free of insertion anomalies.

Proof. If. Let d be a database over R such that d � �, t be a
tuple that is compatible with d, and u 2 r be a tuple,
where r 2 d is the relation over R. It follows that t is
compatible with dÿ fug. We need to show that if
CHASE(d [ftg, I) � �, then CHASE(�dÿ fug� [ftg, I)
� �. By Theorem 2.2 of the chase procedure,
CHASE(�dÿ fug� [ftg, I) � I, so it remains to show
that CHASE(�dÿ fug� [ftg, I) � F. Let CHASE(d [ftg,
I) = fr1; r2; . . . ; rng and let CHASE(�dÿ fug� [ftg, I) =
fs1; s2; . . . ; sng. Then, by Definition 2.10 of the chase
procedure, we have that for all i 2 f1; 2; . . . ; ng, si � ri. It

288 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

TABLE 6
The Relation in d over STUDENT

TABLE 7
The Relation in d over ENROL

TABLE 8
The Relation in d0 over STUDENT

TABLE 9
The Relation in d0 over ENROL

follows that CHASE(�dÿ fug� [ftg, I) � � since, by
Definition 5.2, CHASE(d [ftg, I) � F.

Only if. If R is free of modification anomalies, then, by
a similar argument to that made in the only if part of the
proof of Theorem 5.1, it follows that � is reduced and R
is in BCNF. In the first case, we add an additional tuple u
over Ri, which contains ones, to the original state of ri
and, in the second case, we add an additional tuple u
over Ri, which contains zeros, to the original state of ri.
The result now follows by the if part of Theorem 5.1. tu

Combining Theorems 4.3, 5.1, and 5.2, we obtain the next
result.

Corollary 5.3. Let � � F [I be a set of FDs and noncircular
INDs over a database schema R. Then, the following
statements are equivalent:

1. R is free of insertion anomalies.
2. R is free of modification anomalies.
3. R is in RFNF.

6 GENERALIZED ENTITY INTEGRITY

In this section, we justify superkey-based INDs on the basis
that they do not cause the propagation of the insertion of
tuples that represent undefined entities, thus causing the
violation of entity integrity. This problem was illustrated in
Example 1.2 given in the introduction.

In the next definition, we view the chase procedure as a
mechanism which enforces the propagation of insertions of
tuples due to the INDs in I.

Definition 6.1 (Generalized entity integrity). Let t be a tuple
that is added to a relation ri over Ri, in the current state of a
database d, during the computation of CHASE(d;�). Then, t
is entity-based if there exists at least one key X for Ri with
respect to Fi such that for all A 2 X, t[A] is not a new value
that is assigned to t as a result of invoking the IND rule.

A database schema R satisfies generalized entity integ-
rity with respect to a set � � F [I of FDs and INDs over R
if, for all databases d over R, all the tuples that are added to
relations in the current state of d during the computation of
CHASE(d;�) are entity-based.

The next theorem shows that satisfaction of generalized
entity integrity is equivalent to the set of INDs being
superkey-based.

Theorem 6.1. A database schema R satisfies generalized entity
integrity with respect to a set of FDs and INDs � � F [I if
and only if I is superkey-based.

Proof. If I is superkey-based, then the result immediately
follows by the definition of the IND rule (see Definition
2.10). On the other hand, if I is not superkey-based, then
there is some IND Ri[X] � Rj[Y] 2 I such that Y is not a
superkey for Rj with respect to Fj. Let d be a database
over R such that all its relations apart for ri over Ri are
empty. The relation ri has a single tuple. By the
definition of the FD rule (see Definition 2.10), we have
that, for every key, say K, of Rj with respect to Fj, there is
at least one attribute, say A 2 K, such that the tuple tj
added to rj over Rj is assigned a new A-value by the

IND rule; otherwise, contrary to assumption, we can
deduce that Y is a superkey for Rj with respect to Fj. It
follows that R does not satisfy generalized entity
integrity, concluding the proof. tu

7 INCLUSION DEPENDENCY NORMAL FORM

A database schema is in IDNF with respect to a set of FDs
and INDs if it is in BCNF with respect to the set of FDs and
the set of INDs is noncircular and key-based. We show that
a database schema is in IDNF if and only if it satisfies
generalized entity integrity and is either free of insertion
anomalies or free of modification anomalies or in redun-
dancy free normal form.

We next formally define IDNF (cf. [28], [29]).

Definition 7.1 (Inclusion dependency normal form). A
database schema R is in Inclusion Dependency Normal
Form (IDNF) with respect to a set of � of FDs F and INDs I
over R (or, simply, in IDNF if � is understood from context) if

1. R is in BCNF with respect to F and
2. I is a noncircular and key-based set of INDs.

We note that if the set of INDs I is empty, then R being in
IDNF is equivalent to R being in BCNF. We further note
that we have not restricted the FDs in F to be standard.

The next result follows from Corollary 5.3, Theorem 6.1,
and Definition 7.1.

Theorem 7.1. Let � � F [I be a set of FDs and noncircular
INDs over a database schema R. Then, the following
statements are equivalent:

1. R is in IDNF
2. R is free of insertion anomalies and satisfies general-

ized entity integrity.
3. R is free of modification anomalies and satisfies

generalized entity integrity.
4. R is in RFNF and satisfies generalized entity integrity.

8 CONCLUDING REMARKS

We have identified three problems that may arise when
designing databases in the presence of FDs and INDs, apart
from the update anomalies and redundancy problems that
may arise in each relation due to the FDs considered on
their own. The first problem is that of attribute redundancy,
the second problem is the potential violation of entity
integrity when propagating insertions, and the third
problem concerns avoiding the complex interaction which
may occur between FDs and INDs and the intractability of
determining such interaction. The first problem was
formalized through RFNF and it was shown in
Corollary 5.3 that a database schema is in RFNF with
respect to a set of FDs and INDs if and only if it is free of
insertion anomalies or equivalently free of modification
anomalies. This result can be viewed as an extension of a
similar result when considering FDs on their own. The
second problem was formalized through generalized entity
integrity and it was shown in Theorem 6.1 that a database
schema satisfies generalized entity integrity with respect to

LEVENE AND VINCENT: JUSTIFICATION FOR INCLUSION DEPENDENCY NORMAL FORM 289

a set of FDs and INDs if and only the set of INDs is
superkey-based. The third problem was formalized through
the noninteraction of the implication problem for FDs and
INDs and it was shown in Theorem 3.1 that a set of FDs and
INDs do not interact when the set of INDs is proper
circular, the set of FDs and INDs are reduced, and the
database schema is in BCNF. Combining all these result
together, we obtained, in Theorem 7.1, three equivalent
semantic characterizations of IDNF. Theorem 7.1 justifies
IDNF as a robust normal form that eliminates both
redundancy and update anomalies from the database
schema.

If the goal of normalization is to reduce redundancy,
then it seems that, apart from R being in BCNF, in general,
we must restrict the set of INDs to be noncircular (see
Example 4.5). Nonetheless, circular sets of INDs arise in
practice, for example, when we want to express pairwise
consistency. (Two relation schemas R and S are consistent if
the set of INDs I includes the two INDs: R[R \ S] � S[R \ S]
and S[R \ S] � R[R \ S]. A database schema R is pairwise
consistent if every pair of its relation schemas are consistent
[5]; we note that pairwise consistency can be expressed by a
set of proper circular INDs.) In this case, we need
alternative semantics to express the goal of normalization.
A minimal requirement is that the FDs and INDs have no
interaction. By Theorem 3.1, as long as the set of FDs and
INDs � � F [I is reduced and R is in BCNF with respect to
F, then, when the set of INDs I expresses pairwise
consistency, F does not interact with I since I is proper
circular. Consider a BCNF database schema R with relation
schemas EMP = {ENAME, DNAME} and DEPT = {DNAME,
LOCATION, MGR}, with F = {ENAME ! DNAME,
DNAME ! {LOCATION, MGR}, MGR ! DNAME} and
I = {EMP[DNAME] � DEPT[DNAME], DEPT[DNAME] �
EMP[DNAME]}. The set of INDs I expresses the fact that all
employees work in departments that exist and all depart-
ments have at least one employee. The first IND is key-
based, but the second is not. Despite this fact, it can be
verified that F and I do not interact. Moreover, if managers
are also employees, then we could add the IND
DEPT[MGR] � EMP[ENAME] to I and it can be verified
by exhibiting the appropriate counterexamples that it is still
true that F and I do not interact although now that I is not
even proper circular. The database schema R seems to be a
reasonable design, but it is not in IDNF. Further research
needs to be carried out to determine the semantics of
normal forms for such FDs and INDs. We conclude the
paper by proposing such a normal form. A database schema
R is in Interaction Free Inclusion Dependency Normal Form
with respect to a set of � of FDs F and INDs I over R if:

1. R is in BCNF with respect to F,
2. All the INDs in I are either key-based or express

pairwise consistency, and
3. F and I do not interact.

REFERENCES

[1] P. Atzeni and V. De Antonellis, Relational Database Theory.
Redwood City, Calif.: Benjamin/Cummings, 1993.

[2] W.W. Armstrong, ªDependency Structures of Data Base Relation-
ships,º Proc. IFIP Congress, pp. 580-583, 1974.

[3] C. Beeri and P.A. Bernstein, ªComputational Problems Related to
the Design of Normal Form Relational Schemas,º ACM Trans.
Database Systems, vol. 4, pp. 30-59, 1979.

[4] J. Biskup and P. Dublish, ªObjects in Relational Database Schemes
with Functional, Inclusion and Exclusion Dependencies,º Theore-
tical Informatics and Applications, vol. 27, pp. 183-219, 1993.

[5] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, ªOn the
Desirability of Acyclic Database Schemes,º J. ACM, vol. 30,
pp. 479-513, 1983.

[6] P.A. Bernstein and N. Goodman, ªWhat Does Boyce-Codd
Normal Form Do?º Proc. Int'l Conf. Very Large Data Bases,
pp. 245-259, 1980.

[7] M.A. Casanova and J.E. Amaral de Sa, ªMapping Uninterpreted
Schemes into Entity-Relationship Diagrams: Two Applications to
Conceptual Schema Design,º IBM J. Research and Development,
vol. 28, pp. 82-94, 1984.

[8] M.A. Casanova, R. Fagin, and C.H. Papadimitriou, ªInclusion
Dependencies and Their Interaction with Functional Dependen-
cies,º J. Computer and System Sciences, vol. 28, pp. 29-59, 1984.

[9] E.P.F. Chan, ªA Design Theory for Solving the Anomalies
Problem,º SIAM J. Computing, vol. 18, pp. 429-448, 1989.

[10] S.S. Cosmadakis and P.C. Kanellakis, ªFunctional and Inclusion
Dependencies: A Graph Theoretic Approach,º Advances in
Computing Research, P.C. Kanellakis and F. Preparata, eds., vol. 3,
pp. 163-184. Greenwich: JAI Press, 1986.

[11] S.S. Cosmadakis, P.C. Kanellakis, and M.Y. Vardi, ªPolynomial-
Time Implication Problems for Unary Inclusion Dependencies,º J.
ACM, vol. 37, pp. 15-46, 1990.

[12] E.F. Codd, ªRecent Investigations in Relational Data Base
Systems,º Proc. IFIP Congress, pp. 1,017-1,021, 1974.

[13] E.F. Codd, ªExtending the Database Relational Model to Capture
More Meaning,º ACM Trans. Database Systems, vol. 4, pp. 397-434,
1979.

[14] M.A. Casanova, L. Tucherman, and A.L. Furtado, ªEnforcing
Inclusion Dependencies and Referential Integrity,º Proc. Int'l Conf.
Very Large Data Bases, pp. 38-49, 1988.

[15] M.A. Casanova and V.M.P. Vidal, ªTowards a Sound View
Integration Methodology,º Proc. ACM Symp. Principles of Database
Systems, pp. 36-47, 1983.

[16] A.K. Chandra and M.Y. Vardi, ªThe Implication Problem for
Functional and Inclusion Dependencies Is Undecidable,º SIAM J.
Computing, vol. 14, pp. 671-677, 1985.

[17] C.J. Date, ªReferential Integrity,º Relational Database: Selected
Writings, pp. 41-63. Reading, Mass.: Addison-Wesley, 1986.

[18] R. Fagin, ªMultivalued Dependencies and a New Normal Form
for Relational Databases,º ACM Trans. Database Systems, vol. 2,
pp. 262-278, 1977.

[19] R. Fagin, ªNormal Forms and Relational Database Operators,º
Proc. ACM SIGMOD Conf. Management of Data, pp. 153-160, 1979.

[20] R. Fagin, ªA Normal Form for Relational Databases that Is Based
on Domains and Keys,º ACM Trans. Database Systems, vol. 6,
pp. 387-415, 1981.

[21] T. Imielinski, ªAbstraction in Query Processing,º J. ACM, vol. 38,
pp. 534-558, 1991.

[22] D.S. Johnson and A. Klug, ªTesting Containment of Conjunctive
Queries under Functional and Inclusion Dependencies,º
J. Computer and System Sciences, vol. 28, pp. 167-189, 1984.

[23] T.-W. Ling and C.H. Goh, ªLogical Database Design with
Inclusion Dependencies,º Proc. Int'l Conf. Data Eng., pp. 642-649,
1992.

[24] M. Levene and G. Loizou, ªHow to Prevent Interaction of
Functional and Inclusion Dependencies,º Information Processing
Letters, vol. 71, pp. 115-125, 1995.

[25] D. Maier, The Theory of Relational Databases. Rockville, Md.:
Computer Science Press, 1983.

[26] H. Mannila, ªOn the Complexity of the Inference Problem for
Subclasses of Inclusion Dependencies,º Proc. Winter School on
Theoretical Computer Science, pp. 182-193, 1984.

[27] J.C. Mitchell, ªThe Implication Problem for Functional and
Inclusion Dependencies,º Information and Control, vol. 56, pp. 154-
173, 1983.

[28] H. Mannila and K.-J. RaÈihaÈ, ªInclusion Dependencies in Database
Design,º Proc. Int'l Conf. Data Eng., pp. 713-718, 1986.

[29] H. Mannila and K.-J. RaÈihaÈ, The Design of Relational Databases.
Reading, Mass.: Addison-Wesley, 1992.

290 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 2, MARCH/APRIL 2000

[30] E. Sciore, ªComparing the Universal Instance and Relational Data
Models,º Advances in Computing Research, P.C. Kanellakis and F.
Preparata, eds., vol. 3, pp. 139-162. Greenwich: JAI Press, 1986.

[31] J.D. Ullman, Principles of Database and Knowledge-Base Systems,
vol. 1. Rockville, Md.: Computer Science Press, 1988.

[32] M.W. Vincent, ªModification Anomalies and Boyce-Codd Normal
Form,º Research and Practical Issues in Data Management, B.
Srinivasan and J. Zeleznikow, eds., pp. 251-264. Singapore: World
Scientific, 1992.

[33] M.W. Vincent, ªThe Semantic Justification for Normal Forms in
Relational Database Design,º PhD thesis, Dept. of Computer
Science, Monash Univ., Melbourne, Australia, 1994.

[34] M.W. Vincent, ªRedundancy Elimination and a New Normal
Form for Relational Databases,º Semantics in Databases, B.
Thalheim and L. Libkin, eds., pp. 247-264, Berlin: Springer Verlag,
1998.

Mark Levene received his PhD degree in
computer science in 1990 from Birkbeck Col-
lege, which is part of the University of London.
Dr. Levene is currently a senior lecturer in the
Department of Computer Science at University
College London, also part of the University of
London. He has published extensively in the
area of database theory and has recently
coauthored a comprehensive book on relational
databases and its extensions. His main research

interests are database theory and hypertext.

Millist W. Vincent received his PhD from
Monash University in 1994 for a dissertation in
the area of database design. He is a senior
lecturer in the School of Computer and Informa-
tion Science at the University of South Australia.
He has published widely in the areas of
database design, database theory, and view
maintenance, and his current interests are in the
areas of database theory and view maintenence.

LEVENE AND VINCENT: JUSTIFICATION FOR INCLUSION DEPENDENCY NORMAL FORM 291

	IEEE sample cover.pdf
	levene5.pdf

